1-Nitro-2-(*tert*-butylamino)cyclohexene (5). The following experiment is typical of the procedure employed in the preparation of 1-nitro-2-(*tert*-butylamino)cycloalkenes. A stirred suspension of potassium amide was prepared by adding 7.82 g (0.20 g-atom) of freshly cut potassium metal and a crystal of ferric nitrate decahydrate to 150 mL of liquid ammonia. After the suspension was cooled to -40 °C, 15.33 g (0.10 mol) of *N*-cyclohexylidene*tert*-butylamine (2) was added in one portion. After the suspension was stirred for 30 min, the temperature was lowered to -60 °C and 15.76 g (0.15 mol) of *n*-propyl nitrate added (Caution: cooling must be maintained during the addition of the nitrating agent as long as the high exotherm persists) over a period of 3 min while the reaction temperature was kept below -40 °C. After the suspension was stirred for 30 min at -33 °C, 11.77 g (0.22 mol) of ammonium chloride was added at -45 °C.

The ammonia was replaced with absolute ether, the inorganic salts were filtered off, and the ether was removed in vacuo. Trituration of the residue with hexane gave 9.54 g of crude 5. Recrystallization from hexane using decolorizing carbon gave 8.77 g (44%) of 5 (mp 120–122 °C). Further recrystallization gave analytically pure 5: mp 122–123 °C; UV max (95% C₂H₅OH) 246 nm (sh). 370 (log ϵ 4.31); IR (CCl₄) 1602 (C=N), 1219 and 1122 cm⁻¹ (NO₂⁻); NMR (CDCl₃) δ 1.50 (s, 9, CH₃), 1.74 (m, 4, C₄H and C₅H), 2.70 (m, 4, C₃H and C₆H), 12.0 (br, 1, ⁺NH); mass spectrum (70eV), m/e (rel intensity) 198 (59), 125 (100). Anal. Calcd for C₁₀H₁₈N₂O₂: C, 60.59; H, 9.15; N, 14.13. Found: C, 60.70; H, 8.91; N, 14.40.

1-Nitro-2-(*tert*-butylamino)cyclopentene (4). From 7.82 g (0.20 g-atom) of potassium, 13.9 g (0.10 mol) of *N*-cyclopentylidene-*terr*-butylamine, 15.75 g (0.15 mol) of *n*-propyl nitrate, and 12.77 g (0.24 mol) of ammonium chloride was obtained 6.40 g (35%) of 4: np 111–1.12 °C (hexane); UV max (95% C_2H_5OH) 241 nm (sh), 366 (log ϵ 4.39); IR (CCl₄) 1615 (C—N), 1205 and 1180 cm⁻¹ (NO₂⁻); NMR (CDCl₃) δ 1.44 (s, 9, CH₃), 1.98 (m, 2, C₄H), 2.84 (m, 4, C₃H and C₅H), 10.2 (br, 1, ⁺NH); mass spectrum (75 eV), *m/e* (rel intensity) 184 (50), 57 (100). Anal. Calcd for C₉H₁₆N₂O₂: C, 58.67; H, 8.75; N, 15.20. Found: C, 58.58; H, 8.71; N, 15.32.

1-Nitro-2-(*tert*-butylamino)cycloheptene (6). From 7.82 g (0.20 g-atom) of potassium, 16.7 g (0.10 mol) of *N*-cycloheptylidene-*tert*-butylamine, 15.75 g (0.15 mol) of *n*-propyl nitrate, and 12.30 g (0.23 mol) of ammonium chloride was obtained 10.72 g (50%) of 6: mp 116-119 °C (hexane); UV max (95% C₂H₅OH) 245 nm (sh), 370 (log ϵ 4.19); IR (CCl₄) 1595 (C=N), 1212 and 1122 cm⁻¹ (NO₂⁻); NMR (CDCl₃) δ 1.48 (s, 9, CH₃), 1.72 (m, 6, C₄H, C₅H, and C₆H), 2.88 (m, 4, C₃H and C₇H), 12.2 (br, 1, ⁺NH); mass spectrum (75 eV), m/e (rel intensity) 212 (55), 57 (100). Anal. Calcd for C₁₁H₂₀N₂O₂: C, 62.23; H, 9.50; N, 13.19. Found: C, 61.97; H, 9.33; N, 13.14.

1-Nitro-2-(*tert*-butylamino)-3-bromocyclohexene (7). (a) Using Compound 5. 'To a stirred solution of 5.94 g (0.030 mol) of 5 and 2.31 g (0.033 mol) of pyridine in 25 mL of chloroform was added dropwise, over a period of 25 min, 4.84 g (0.030 mol) of bromine dissolved in 25 mL of chloroform while the reaction temperature was kept at 3-5 °C. After continuing stirring for 30 min at ice bath temperature, the reaction mixture was washed with three 35-mL portions of water. The chloroform portion was dried (MgSO₄) and concentrated to give 9.53 g of solid residue. The residue was stirred successively in four 250-mL portions of ethyl ether, leaving 2.26 g of insoluble material which was pyridinium bromide.

Concentration of the combined ether extracts gave 7.00 g (84%) of crude 7. Recrystallization gave 6.54 g (79%) of pure 7: mp 131–135 °C dec (hexane); UV max (95% C₂H₅OH) 230 nm (log ϵ 3.66), 392 (4.21); IR (CCl₄) 1608 (C=N), 1215 and 1123 cm⁻¹ (NO₂⁻); NMR (CDCl₃) $\dot{\epsilon}$ 1.54 (s, 9, CH₃), 2.06 (m, 4, C₄H and C₅H), 2.80 (m, 2, C₃H), 5.30 (m, 1, C₆H), 11.3 (br, 1, ⁺NH); mass spectrum (75eV), m/e (rel intensity) 278 (7.6), 276 (7.6), 57 (100). Anal. Calcd for C₁₀H₁₇BrN₂O₂: C, 43.34; H, 6.18; N, 10.11; Br, 28.84. Found: C, 43.61; H, 6.33; N, 10.36; Br, 29.00.

(b) Using Sodium 2-(*tert*-Butylamino)-2-cyclohexenenitronate (9). To a suspension of 1.82 g (8.2 mmol) of 9 in 40 mL of chloroform kept at 3-5 °C was added dropwise over a period of 10 min 1.31 g (8.2 mmol) of bromine dissolved in 10 mL of chloroform. After being stirred an additional 5 min at ice-bath temperature, the mixture was filtered and the filtrate dried (MgSO₄). Removal of the solvent gave 1.06 g (47%) of 7, mp 129–130.5 °C dec (hexane). A mixture melting point determination with 7 obtained in (a) gave no depression. Also the IR and NMR spectra were identical with those of 7.

Sodium 2-(*tert*-Butylamino)-2-cyclohexenenitronate (9). To a solution of 3.96 g (0.020 mol) of 5 in 250 mL of dry THF was added 0.929 g of sodium hydride suspended in mineral oil (52% sodium hydride by weight, 0.021 mol). After the mixture was stirred at 25 °C for 5 h, 480 mL (~0.020 mol) of hydrogen was collected. The reaction mixture was filtered and the residue washed with ethyl ether to give 4.50 g of air-dried crude 9: IR (KBr) 3250 (NH 1612 (C=N, C=C), 1231 and 1146 cm⁻¹ (NO₂⁻); NMR [(CD₃)₂SO] δ 1.16 (s, 9, CH₃), 1.52 (m, 2, C₄H), 2.00 (m, 2, C₅H), 2.50 (m, C₆H; this peak overlapped the residual proton peak of the solvent, and its integration was not obtained), 4.34 (t, 1, C₃H), 8.10 (s, 1, NH).

Conversion of Salt 9 to Compound 5. Crude 9 (0.83 g, 3.8 mmol) was suspended in 250 mL of ethyl ether, and glacial acetic acid (0.22 g, 3.8 mmol) was added dropwise while the reaction temperature was kept at 3-5 °C and the reaction mixture was kept under nitrogen. The reaction was continued 3 h at room temperature, the mixture filtered, and the filtrate dried (MgSO₄) and concentrated to give 0.51 g (68%) of 5, mp 121-122 °C. The spectra were identical with those of authentic 5.

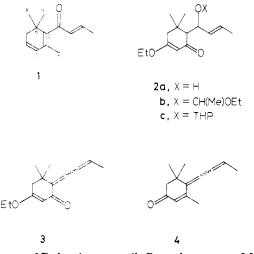
3,3-Dibromo-2-amino-1-nitrocyclohexene (10). To a stirred solution of 2.00 g (7.2 mmol) of 7 in 20 mL of chloroform kept at 3-5 °C was added dropwise over a period of 10 min 1.15 g (7.2 mmol) of bromine dissolved in 10 mL of chloroform. Stirring was continued for 30 min. Then the reaction mixture was concentrated and the residue triturated with hexane to give 2.18 g of yellow solid, mp 121-125 °C. The solid was taken up in ethyl ether, the mixture filtered, and the filtrate concentrated to give a solid residue. Trituration with hexane afforded 1.14 g (53%) of crude 10. Two recrystallizations, the first from cyclohexane and the second from hexane, gave 0.22 g (10%) of analytically pure 10: mp 122.5-123 °C; UV max (95% C₂H₅OH) 230 nm (log ϵ 3.64), 371 (4.13); IR (CCl₄) 3470 and 3300 (NH₂), 1623 (C==C, C==N), 1382 and 1249 cm⁻¹ (NO₂⁻); NMR (CDCl₃) δ 1.95 (m, 2, C₅H), 2.82 $(m, 4, C_4H \text{ and } C_6H), 7.65 (br, 2, NH_2); mass spectrum (15 eV),$ m/e (rel intensity) 302 (22), 300 (43), 298 (22), 221 (97), 219 (100). Anal. Calcd for $C_6H_8Br_2N_2O_2$: C, 24.03; H, 2.69; N, 9.34; Br, 53.28. Found: C, 24.00; H, 2.73; N, 9.09; Br, 53.60.

Acknowledgment. The support of this investigation by a grant from the IMC Chemical Group, Inc., is greatly appreciated.

Registry No. 1, 25115-61-1; **2**, 37810-16-5; **3**, 71041-39-9; **4**, 71041-40-2; **5**, 71041-41-3; **6**, 71041-42-4; **7**, 71041-43-5; **9**, 71060-33-8; **10**, 71041-44-6; cyclohexanone, 108-94-1; *tert*-butylamine, 75-64-9; cycloheptanone, 502-42-1; cyclopentanone, 120-92-3; potassium amide, 17242-52-3.

A Convenient Preparation of β -Damascenone from Dimedone

Sigeru Torii,* Tsutomu Inokuchi, and Hidenori Ogawa


Department of Industrial Chemistry, School of Engineering, Okayama University, Okayama Japan 700

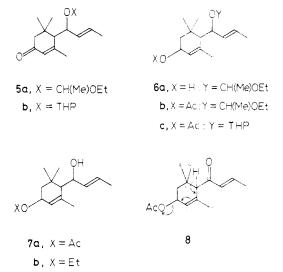
Received March 5, 1979

In contrast to synthetic studies of cyclocitryl homologues,¹ a different route from 3-ethoxy-6-[(E)-1hydroxy-2-butenyl]-5,5-dimethyl-2-cyclohexen-1-one (**2a**),² prepared from the condensation of a kinetic enolate anion³

Torii, S.; Uneyama, K.; Ichimura, H. J. Org. Chem. 1979, 44, 2229.
 The compound 2a has been prepared from dimedone smoothly and used for the preparation of megastigma-4,6,8-trien-3-ones (4), a characteristic flavoring component of Burley tobacco: Torii, S.; Inokuchi, T.; Ogawa, H. Bull. Chem. Soc. Jpn. 1979, 52, 1233 and references cited therein.

of 3-ethoxy-5,5-dimethyl-2-cyclohexen-1-one with (E)-2butenal, to β -damascenone (1), a characteristic odorous

component of Bulgarian rose oil, Rosa damascena Mill.,^{4,5} was investigated. As a procedure for the introduction of a C_4 unit to the cyclohexenyl moiety, the condensation of 2.6.6-trimethyl-2-cyclohexenone with 1-butyn-3-ol⁶ and/or 2-butyn-1-ol⁷ has been recorded in the literature. We present here a straightforward C4 plus C9 procedure for β -damascenone synthesis, indicating that the simplest approach to prepare the cyclohexadiene system of 1 is to use base-catalyzed elimination reaction of the good leaving group (AcO) on the key precursor 8, prepared from dimedone.


When methylation of 2b and/or 2c, provided by etherification⁸ of 2a, was attempted using methylmagnesium iodide, the reagent caused 1,2-elimination of alkoxyl groups, resulting in the formation of 3 in 72–75% yields. But, methyllithium in ether led to the desired methylation, giving 5 in 49-50% yields. The yield of 5 was increased to 61% together with 7% of 3 and 20% of 4 when run in hexane solvent.

Treatment of 5a with $LiAlH_4$ in ether, giving 6a (96%), followed with acetic anhydride in pyridine provided the

(b) Ohloff, G.; Rautenstrauch, V.; Schulte-Elte, K. H. Helv. Chim. Acta 1973, 56, 1503. (c) Isoe, S.; Katsumura, S.; Sakan, T. *Ibid.* 1973, 56, 1514.
 (7) Rautenstrauch, V.; Naf, F. German Offen. 2242751 (Cl. C07c, C11b), March 15, 1973, Swiss Appl. 12 755/71, Aug. 31, 1971. *Chem. Abstr.* 1973,

79. 5053k.

acetate 6b (95%). Hydrolysis of the ether bond of 6b with

pyridinium p-toluenesulfonate (PPTS) in ethanol at 40 °C for 3 h afforded the alcohol 7a (94%), but hydrolysis of 6b at 55 °C gave a 1:1 mixture of 7a and 7b in 43% yield. Tetrahydropyranyl ether 6c was found to be less reactive than 6b in PPTS-ethanol and could be hydrolyzed at 55 °C for 3 h, giving 29% of a 1:1 mixture of 7a and 7b.

Oxidation of 7a with activated manganese dioxide⁹ in dichloromethane afforded the enone 8 in 87% yield. In contrast, treatment of 7a with pyridinium chloro-chromate-dichloromethane¹⁰ gave less than 40% yield of 8 and N-chlorosuccinimide-dimethyl sulfide¹¹ caused elimination of the hydroxyl group of 7a. Thermal decomposition of 8 in 1,5-diazabicyclo[5.4.0]undec-5-ene under reflux for 20 s gave the desired 1 in 79% yield as the result of 1,4-elimination of acetic acid.

Experimental Section

The boiling points and melting points are uncorrected. IR spectra were determined with a JASCO IRA-1 grating spectrometer. 1 H NMR (100 MHz) and 13 C NMR (25.05 MHz) spectra were determined with a JEOL FX-100 spectrometer. Samples were dissolved in CDCl₃ and the chemical shift values are expressed in δ values (ppm) relative to Me₄Si as an internal standard. Elemental analyses were performed in our laboratory

3-Ethoxy-6-[(E)-1-(1-ethoxy)ethoxy-2-butenyl]-5,5-dimethyl-2-cyclohexen-1-one (2b). A solution of 2a (244 mg, 1.02 mmol), ethoxyethylene (147 mg, 2.05 mmol), and PPTS (10 mg, 0.04 mmol) in CH₂Cl₂ (7 mL) was stirred at room temperature for 7 h. The mixture was quenched with cold aqueous saturated $NaHCO_3$ and extracted with ether-benzene. The extracts were washed with brine, dried (Na_2SO_4) , and concentrated to give 301 mg (95%) of **2b** as an oil: bp 72.0–74.0 °C (0.015 mm, Kugelrohr); IR (neat) 1651 (C=O), 1612 (C=C), 1217, 1197, 1148, 1135, 1086, 1032, 967 cm⁻¹; ¹H NMR δ 1.07, 1.20 (s, 6, CH₃), 1.13–1.30 (m, 6, CH₃), 1.35 (t, 3, J = 7 Hz, CH₃), 1.67 (d, 3, J = 6 Hz, CH₃), 2.01, 2.63 (d, 2, J = 17 Hz, CH₂O), 4.35 (m, 1, C=CCHO), 4.67 (q, 1, J = 6 Hz, OCHO), 5.32 (d, 1, J = 2 Hz, HC=C), 5.40-5.80(m, 2, HC=C). Anal. Calcd for $C_{18}H_{30}O_4$: C, 69.64; H, 9.74. Found: C, 69.70; H, 9.45.

3-Ethoxy-5,5-dimethyl-6-[(E)-1-(2-tetrahydropyranyloxy)-2-butenyl]-2-cyclohexen-1-one (2c). In a manner similar to 2b, 2c was prepared in 93% yield by the reaction of 2a and dihydropyran: mp 79.0-80.0 °C; IR (Nujol) 3060, 3030, 1644 (C=O), 1614 cm⁻¹ (C=C); ¹H NMR δ 1.08, 1.23 (s, 6, CH₃), 1.66 (d, 3, J = 8 Hz, CH₃), 1.10–2.81 (m, 12, CH₂, CH), 3.25–4.04 (m, 4, CH₂O), 4.17-4.71 (m, 2, CHO), 5.22-5.84 (m, 3, HC=C). Anal.

^{(3) (}a) Stork, G.; Kraus, G. A. J. Am. Chem. Soc. 1976, 98, 2351. (b)

Torii, S.; Okamoto, T.; Kadono, S. Chem. Lett. 1977, 495. (4) Demole, E.; Enggist, P.; Säuberli, U.; Stoll, M.; Kováts, E. Helv. Chim. Acta 1970, 53, 541.
(5) β-Damascenone has also been isolated from other natural products:

⁽a) Demole, E.; Berthet, D. Helv. Chim. Acta 1971, 54, 681. (b) Winter,
M.; Enggist, P. Ibid. 1971, 54, 1891. (c) Ibid. 1972, 55, 1866. (d) Kimland,
B.; Aasen, A. J.; Enzell, C. R. Acta Chem. Scand. 1972, 26, 2177. (e)
Karlsson, K.; Wahlberg, I.; Enzell, C. R. Ibid. 1972, 26, 2837. (f) Ibid. 1972, 26, 2837. (f) Ibid. 1972, 26, 2837. (f) Ibid. 1972, 26, 3839. (g) Kimland, B.; Appleton, R. A.; Aasen, A. J.; Roeraade, J.;
Enzell, C. R. Phytochemistry 1972, 11, 309. (h) Roeraade, J.; Enzell, C. R. J. Agric. Food Chem. 1972, 20, 1035. Chem. Abstr. 1972, 77, 123 937h.
(i) Starting, J.; Van Eerde, P. J. Inst. Brew., London 1973, 79, 414. Chem. Abstr. 1973, 79, 144 844g. (j) Renold, W.; Näf-Müller, R.; Keller, U.;
Willhalm, B.; Ohloff, G. Helv. Chim. Acta 1974, 57, 1301. (k) Schreier,
P.; Drawert, F. Z. Lebensm.-Unters. Forsch. 1974, 154, 273. Chem. Abstr. 1975, 82, 560 14t. (l) De Smedt, P.; Liddle, P. Ann. Technol. Agric. 1975, 24, 307. Chem. Abstr. 1977, 86, 700582. (m) Dubois, P.; Rigaud, J. Ibid, 1975, 24, 307. Chem. Abstr. 1977, 86, 700582. (m) Schudel, P. J. Agric. Food Chem. 1975, 23, 943. Chem. Abstr. 1975, 24, 307. Chem. Abstr. 1977, 86, 700582. (a) Demole, E.; Berthet, D. Helv. Chim. Acta 1971, 54, 681. (b) Winter, D.; Schudel, P. J. Agric. Food Chem. 1975, 23, 943. Chem. Abstr. 1975, 83, 175473x; (o) Wahlberg, I.; Karlsson, K.; Austin, D. J.; Junker, N.; Roeraade, J.; Enzell, C. R.; Johnson, W. H. Phytochemistry 1977, 16, 1217. (p) Shibata, S.; Katsuyama, A.; Noguchi, M. Agric. Biol. Chem. 1978, 10, 1211.
(p) Shibata, S.; Katsuyama, A.; Noguchi, M. Agric. Biol. Chem. 1978, 42, 195. (q) Demole, E.; Enggist, P. Helv. Chim. Acta 1978, 61, 2318. (r) Kaiser, R.; Lamparsky, D. Ibid. 1978, 61, 2328.
(6) (a) Isoe, S.; Sakan, T. Japan Kokai 74 75 556 (Cl. 16 C852), July 20, 1974, Appl. 72 118 289, Nov. 24, 1972. Chem. Abstr. 1975, 82, 124 888h.

⁽⁸⁾ Miyashita, M.; Yoshiokoshi, A.; Grieco, P. A. J. Org. Chem. 1977, 42. 3772.

⁽⁹⁾ Attenburrow, J.; Cameron, A. F. B.; Chapman, J. H.; Evans, R. M.; Hems, B. A.; Jansen, A. B. A.; Walker, T. J. Chem. Soc. 1952, 1094.
 (10) Corey, E. J.; Suggs, J. W. Tetrahedron Lett. 1975, 2647.
 (11) Corey, E. J.; Kim. C. U. J. Am. Chem. Soc. 1972, 94, 7586.

Calcd for C₁₉H₃₀O₄: C, 70.77; H, 9.38. Found: C, 70.72; H, 9.33. 6-[(E)-2-Butenylidene]-3-ethoxy-5,5-dimethyl-2-cyclohexen-1-one (3), 4-[(E)-2-Butenylidene]-3,5,5-trimethyl-2-butenyl]-3,5,5-trimethyl-2-cyclohexen-1-one (5a). To a vigorously stirred solution of 2b (167 mg, 0.54 mmol) in hexane (9 mL) was added an ethereal solution of 1.5 M MeLi (0.7 mL, 1.05 mmol) at 3-4 °C. The mixture was stirred at 3-4 °C for 40 min, quenched with cold aqueous saturated NaHCO₃, and extracted with ether-benzene. The extracts were washed with aqueous saturated NaHCO₃, dried (Na₂SO₄), and concentrated. The residue was chromatographed (SiO₂, hexane-AcOEt 3:1) to give 21 mg (20%) of 4^2 (R_1 0.56, hexane-AcOEt 3:1), 8 mg (7%) of 3^2 (R_f 0.53), and 92 mg (61%) of 5a (R_f 0.48) as oils. 5a: bp 55.0-56.0 °C (0.007 mm, Kugelrohr); IR (neat) 3025, 1665 (C=0), 1630 (C=C), 1136, 1125, 1087, 1056, 1005, 972, 935 cm⁻¹; ¹H NMR δ 1.03 (s, 3, CH₃), 1.15 (s, 3, CH₃), 1.16 (t, 3, J = 7 Hz, CH₃), 1.27 $(d, 3, J = 5.5 \text{ Hz}, \text{CH}_3), 1.66 (d, 3, J = 6 \text{ Hz}, \text{CH}_3), 1.80-2.85 (m.)$ 3, CH₂, CH), 2.10 (s, 3, CH₃), 3.20-3.67 (m, 2, CH₂O), 4.34 (d, d, 1, J = 9, 3 Hz, CHO), 4.68 (q, 1, J = 5.5 Hz, CHO), 5.10–5.82 (m, 2, HC=C), 5.97 (br s, 1, HC=C). Anal. Calcd for $C_{17}H_{28}O_3$: C, 72.82; H, 10.06. Found: C, 72.88; H, 10.10.

6-[(E)-2-Butenylidene]-5,5-dimethyl-3-ethoxy-2-cyclohexen-1-one (3). To a solution of 2c (99 mg, 0.31 mmol) in ether (4 mL) was added a solution of MeMgI prepared from MeI (220 mg, 1.55 mmol) and magnesium (37 mg, 1.53 mmol) in ether (3 mL) at 0-5 °C. The mixture was stirred at 0-5 °C for 1 h, quenched with cold aqueous saturated NH₄Cl, and worked up in the usual manner to give 49 mg (72%) of 3.

4-[(E)-1-(1-Ethoxy)ethoxy-2-butenyl]-3,5,5-trimethyl-2cyclohexen-1-ol (6a). To a suspension of LiAlH₄ (30 mg, 0.79 mmol) in ether (1 mL) was added a solution of **5a** (81 mg, 0.29 mmol) in ether (2 mL) at 0-5 °C. The mixture was stirred at room temperature for 1 h and quenched with cold AcOEt (0.5 mL) and cold aqueous 5% NaHCO₃ (0.3 mL). The organic layer was decanted and the white precipitate in the flask was washed with ether-benzene. The combined extracts were dried (Na_2SO_4) and concentrated. The residue was chromatographed $(SiO_2,\ hex$ ane-AcOEt 3:1) to give 81 mg (96%) of 6a as an oil: bp 60.5-61.8 °C (0.005 mm, Kugelrohr); IR (neat) 3360 (OH), 1664 (C=C), 1121, 1092, 1055, 1028, 1000, 967, 952, 929 cm⁻¹; ¹H NMR δ 0.91-1.07 (m, 6, CH₃), 1.23 (q, 3, J = 7 Hz, CH₃), 1.25 (d, 3, J = 76 Hz, CH₃), 1.50–2.20 (m, 3, CH₂, CH), 1.66 (d, 3, J = 3 Hz, CH₃), 1.84 (br s, 3, CH₃), 2.45 (br s, 1, OH), 3.28-3.80 (m, 2, CHO), 3.96-4.40 (m, 2, CHO), 4.58-4.76 (m, 1, OCHO), 5.15-5.97 (m, 3, HC=C). Anal. Calcd for C₁₇H₃₀O₃: C, 72.30; H, 10.71. Found: C, 72.35; H, 10.52

4-[(E)-1-(1-Ethoxy)ethyl-2-butenyl]-3,5,5-trimethyl-2cyclohexen-1-ol Acetate (6b). A solution of 6a (269 mg, 0.95 mmol) and Ac₂O (672 mg, 6.65 mmol) in pyridine (2.5 mL) was stirred at 0-5 °C for 30 min and at room temperature for 12 h. The mixture was poured into cold aqueous 5% tartaric acid and extracted with ether-benzene. The extract was worked up in the usual manner and the crude product was chromatographed (SiO₂, hexane-AcOEt 6:1) to give 294 mg (95%) of 6b as an oil: bp 56.5–58.5 °C (0.007 mm, Kugelrohr); IR (neat) 1731 (ester C==O), 1665 cm⁻¹ (C==C); ¹H NMR δ 0.95, 1.05 (s, 6, CH₃), 1.20 (t, 3, J = 7 Hz, CH₃), 1.24 (d, 3, J = 7 Hz, CH₃), 1.30-2.08 (m, 6, CH₃), CH₂, CH), 1.86 (complex, 3, CH₃), 2.01, 2.02 (s, 3, COCH₃), 3.51 $(q, 2, J = 7 Hz, CH_2O), 4.06-4.39 (m, 1, CHO), 4.52-4.78 (m, 1, 1)$ CHO), 5.03-5.79 (m, 4, HC=C, CHO). Anal. Calcd for C19H32O4: C, 70.33; H, 9.94. Found: C, 70.55; H, 10.22.

4-[(E)-1-Hydroxy-2-butenyl]-3,5,5-trimethyl-2-cyclohexen-1-ol Acetate (7a). A solution of 6b (105 mg, 0.32 mmol) and PPTS (6 mg, 0.023 mmol) in EtOH (5 mL) was stirred at 40 °C for 3 h. The mixture was concentrated and the residue was chromatographed (SiO₂, hexane-AcOEt 3:1) to give 77 mg (94%) of 7a as an oil: bp 62.0-63.0 °C (0.02 mm, Kugelrohr); IR (neat) 3430 (OH), 3020, 1730 (ester C=O), 1667 cm⁻¹ (C=C); ¹H NMR δ 0.96, 1.04 (s, 6, CH₃), 1.20–2.20 (m, 4, CH₂, CH, OH), 1.70 (d, 3, J = 5 Hz, CH₃), 1.88 (s, 3, CH₃), 2.03 (s, 3, COCH₃), 4.42 (m, 1, CHO), 5.52 (m, 1, CHOCO), 5.42–5.87 (m, 3, HC=C). Anal. Calcd for C₁₅H₂₄O₃: C, 71.39; H, 9.57. Found: C, 71.57; H, 9.48.

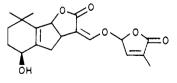
The reaction of **6b** (93 mg, 0.29 mmol) and PPTS (10 mg, 0.04 mmol) in EtOH (5 mL) at 55 °C afforded 31 mg (43%) of a 1:1 mixture of 7a and 7b: IR (neat) 3430 (OH), 3020, 1731, 1716, 1667

(C=C), 1241, 1082, 969 cm⁻¹; ¹H NMR & 0.97, 1.05 (s, 6, CH₃), 1.20 (t, J = 7 Hz, CH₃), 1.38–2.19 (m, 6, CH₃, CH₂, CH), 1.89 (complex, 3, C=CCH₃), 2.04 (s, COCH₃), 2.23 (s, 1, OH), 3.53 (q, J = 7 Hz, OCH₂), 4.49 (br s, 1, C=CCHO), 5.32 (m, 1, CHO), 5.51-5.96 (m, 3, HC=C).

1-(4-Acetoxy-2,6,6-trimethyl-2-cyclohexen-1-yl)-2(E)buten-1-one (8). To a suspension of activated MnO_2^9 (793 mg, 9.1 mmol) in CH₂Cl₂ (3 mL) was added a solution of 7a (78 mg, 0.31 mmol) in CH₂Cl₂ (3 mL). The mixture was vigorously stirred at room temperature for 5 h and diluted with hot acetone. The insoluble materials were separated by centrifugation and the organic layer was concentrated. The crude product was chromatographed (SiO₂, hexane-AcOEt 5:1) to give 67 mg (87%) of 8 as white crystals: mp 82.0-83.5 °C; IR (Nujol) 3040, 1724 (ester C=O), 1684 (C=O), 1672 (C=C), 1622 (C=C), 1357, 1321, 1180, 1126, 1080, 1022, 973 cm⁻¹; ¹H NMR δ 0.90, 1.03 (s, 6, CH₃), 1.50-1.83 (m, 2, CH₂), 1.62 (complex, 3, CH₃), 1.92 (d, d, 3, J =7, 2 Hz, CH₃), 2.07 (s, 3, COCH₃), 2.94 (br s, 1, COCH), 5.33 (m, 1, CHOCO), 5.61 (br s, 1, HC=C), 6.29 (d, q, 1, J = 16, 2 Hz, HC=C), 6.89 (d, q, 1, J = 16, 7 Hz, HC=C); ¹³C NMR δ 18.4 (q, butenyl γ-CH₃), 21.5 (q, acetyl CH₃), 23.2 (q, C-7), 28.5 (q, C-8, C-9), 34.7 (s, C-6), 36.5 (t, C-5), 60.8 (d, C-1), 69.4 (d, C-4), 123.5 (d, C-3), 132.5 (d, butenyl α-CH), 135.8 (s, C-2), 143.5 (d, butenyl β-CH), 171.4 (s, acetyl C=O), 200.8 (s, butenyl C=O). Anal. Calcd for C₁₅H₂₂O₃: C, 71.97; H, 8.86. Found: C, 71.98; H, 9.00.

1-(2,6,6-Trimethylcyclohexa-1,3-dienyl)-2(E)-buten-1-one (β -Damascenone) (1). A mixture of 8 (44 mg, 0.18 mmol) and 1,5-diazabicyclo[5.4.0]undec-5-ene (50 mg, 0.33 mmol) was heated at reflux for 20 s and chromatographed (SiO₂, hexane-AcOEt 10:1) to give 27 mg (79%) of 1 as an oil: bp 36.0-37.5 °C (0.01 mm, Kugelrohr) [lit.⁴ 57 °C (0.001 mm)]; IR (neat) 3030, 2800, 1670 (shoulder), 1637 (C=O), 1615 (C=C), 1440, 1302, 1290, 1250, 1222, (3)10 ddd,) 100 (C = 0), 101 (C = 0), 1440, 1001, 10 (d, q, 1, J = 16, 1.5 Hz, HC=C), 6.85 (d, q, 1, J = 16, 7 Hz, HC=C); ¹³C NMR δ 18.4 (q, butenyl γ-CH₃), 19.5 (q, C-7), 26.4 (q, C-8, C-9), 33.9 (s, C-6), 39.5 (t, C-5), 127.5 (d, C-3), 128.2 (s, C-1), 128.2 (d, C-4), 134.8 (d, butenyl α-CH), 139.6 (s, C-2), 146.4 (d, butenyl β -CH), 201.4 (s, butenyl C=O).

Registry No. 1, 23726-93-4; 2a, 70982-59-1; 2b, 70941-42-3; 2c, 70941-43-4; 3, 70941-44-5; 4, 70941-45-6; 5a, 70941-46-7; 6a, 70941-47-8; 6b, 70941-48-9; 7a, 70941-49-0; 7b, 70941-50-3; 8, 70941-51-4; ethoxyethylene, 109-92-2; dihydropyran, 110-87-2.


Convenient Synthesis of the 2-Methyl-4-hydroxybut-2-enolide Moiety of Strigol

Geoffrey K. Cooper* and Lloyd J. Dolby

Department of Chemistry, University of Oregon, Eugene, Oregon 97403

Received March 23, 1979

Strigol, a potent natural seed germination stimulant for parasitic crop pests of the genera Striga (witchweed) and Orabanche (broomrape), has been synthesized by Sih¹ and

strigol

MacAlpine,² but by methods not readily adaptable to

0022-3263/79/1944-3414\$01.00/0 © 1979 American Chemical Society

^{*}Author to whom correspondence should be addressed at ITT Rayonier, Olympic Research Division, 409 E. Harvard Ave., Shelton, Washington 98584.